

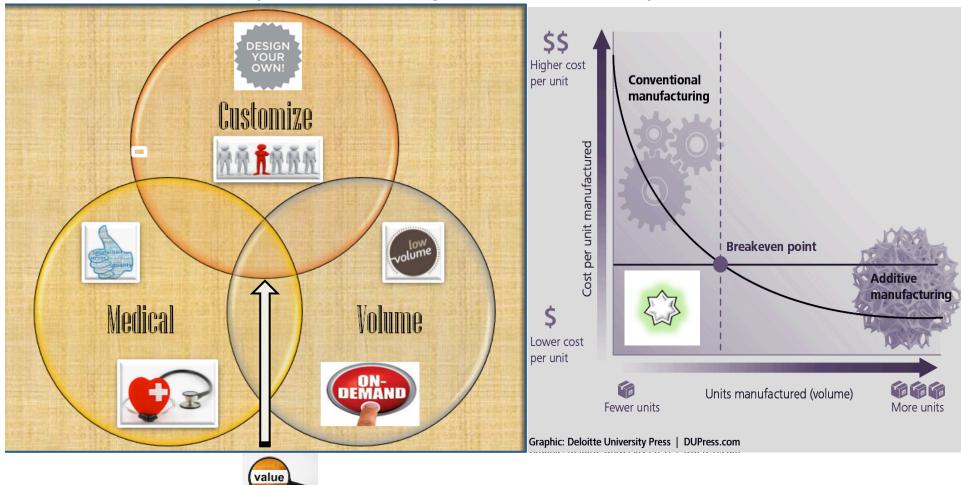
Disruptive Medicine Using 3D Printing

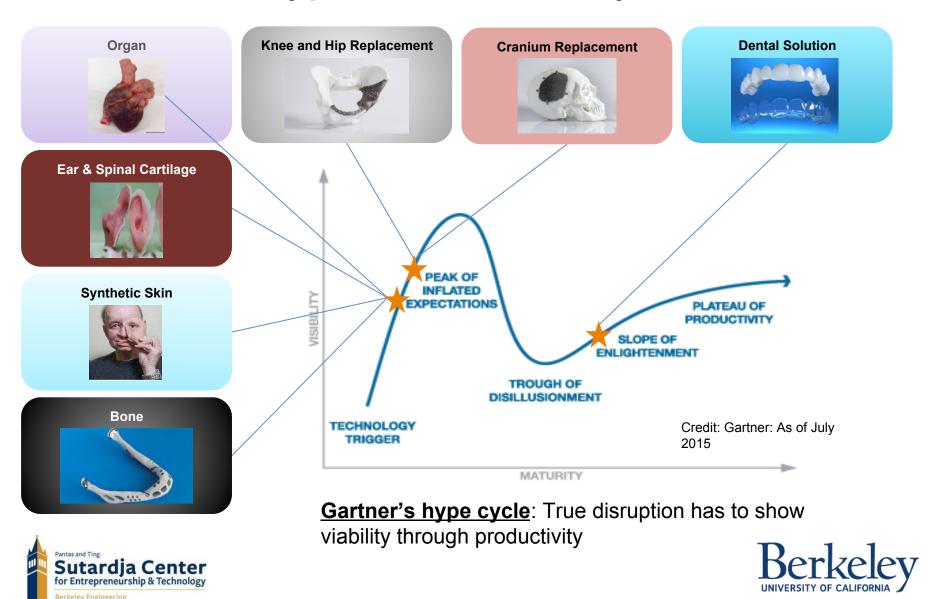
Jeff Hudgens, Naveen Kini, Madhukar Korupolu, Joung Lee, Eric Ng, Yang Seok Ki.

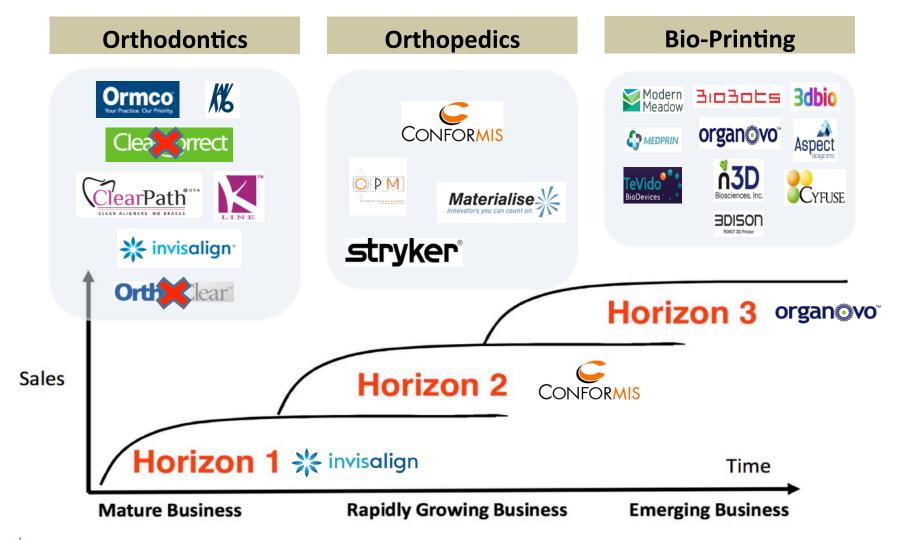
This work was created in an open classroom environment as part of a program within the Sutardja Center for Entrepreneurship & Technology and led by Prof. Ikhlaq Sidhu at UC Berkeley. There should be no proprietary information contained in this paper. No information contained in this paper is intended to affect or influence public relations with any firm affiliated with any of the authors. The views represented are those of the authors alone and do not reflect those of the University of California Berkeley.

3D Printing for Medical Applications

Uniquely Yours!

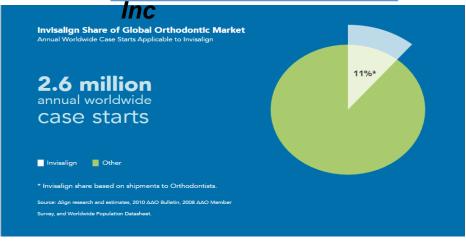



Value Proposition (3D Printing in Medicine)



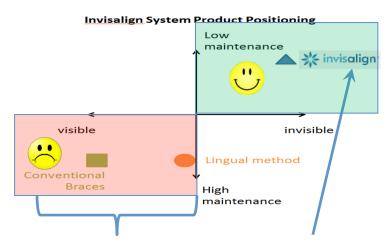
Hype versus Reality

Horizon of Innovation



Horizon #1: Orthodontic Treatment for Malocclusion

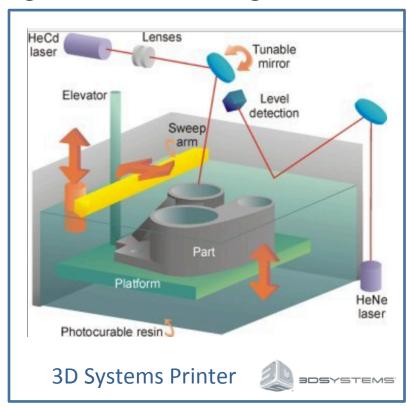
- Accelerating consumer acceptance :
 - 44k patients from 1999-2002
 - <u>286k</u> patients/yr in 2015
 - 11% of SAM.
- Key Growth Milestones :
 - 1998 FDA Approval
 - · Invisalign Adult Full
 - 2001 IPO; Int'l expansion begins
 - 2008 Product Expansion continues
 - Invisalign Teen
 - Invisalign Assist
 - Non-orthodontic GP/dentists
 - 2011 Inorganic growth
 - Aquires iTero Scanner
 - 2015 3M total patients treated
 - 2017 Key Patents Expire
 - Key threat of deep-pocketed competition begins (3M, Dentsply, Ormco, ...)


Industry Landscape

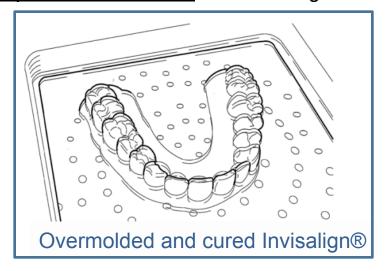
Align Technology's Story of Disruption

Invisalign® is a differentiated, IPprotected treatment solution taking MS from the conventional bracket and wire hardware suppliers

- Conventional braces require frequent office visits for adjustments
 - Invisalign is a progressive pkg of aligners patient switches sequentially every 3 weeks (at home)


Disruption: Service providers have less 'chair time' and more patients (\$\$'s)

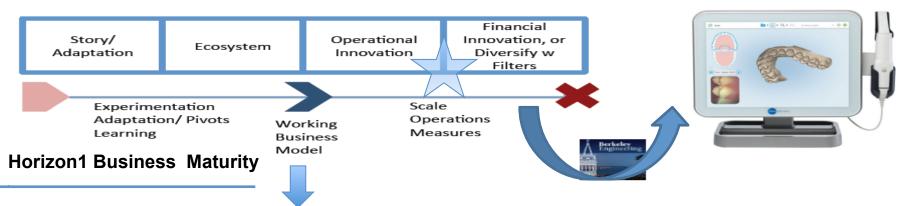
<u>Disruption:</u> Consumers prefer the aesthetics and and low maintenance of the removable aligners v. wire braces



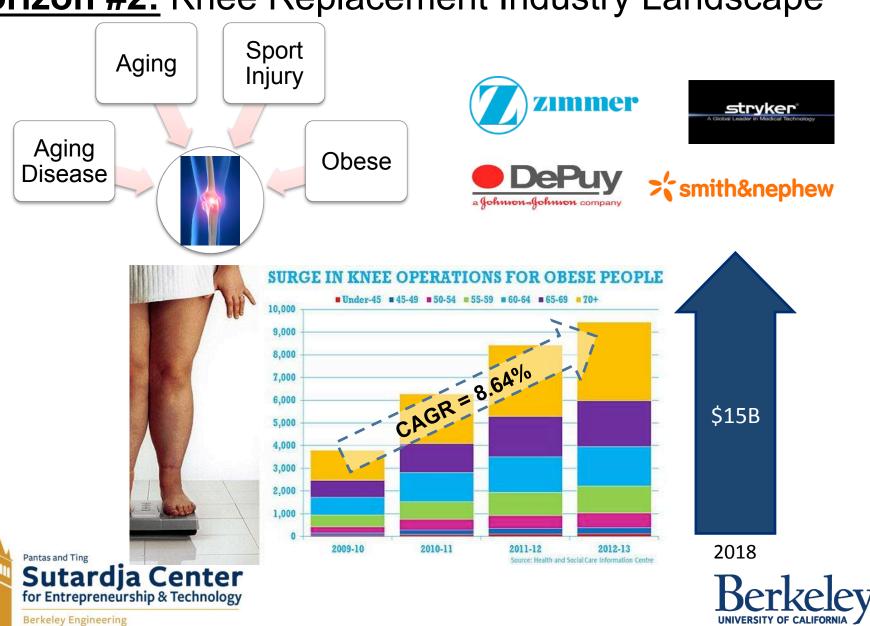
Align's 3D Printing Technology Formula for Success

- 3D makes 10-20 progressive treatment molds
- Algorithms determine the preliminary plan
- Orthodontist confirms plan

- 1) **SERVICE** model using 3D printing equipment
- 2) Exclusive partnership agreement with 3D Systems (DDD)
- 3) **Proprietary** overmold materials (differentiation)
- 4) <u>Early</u> buy-in of Orthodontists (customer acceptance)
- 5) In-house treatment algorithm (expertise)
- 6) Expansion to GP/Dentists with in-house guidance



Align: The Pursuit of Certainty



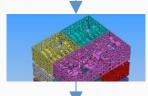
Horizon #2: Knee Replacement Industry Landscape

Knee Replacement Technology Comparison

Comprehensive Suite

Knee systems (full/partial)

Knee components (tibia, patella)


Source: zimmer

Knee Instruments

Image to Implant
Technology

2D scan to 3D image

3D Additive Printing

Just-in-Time delivery

Quality of life!

\$3.5K – \$4K	Price*	\$6K		
12-15 years	Endurance*	20-25 years		
2% serious, 20% unsatisfied	Patient Satisfaction**			
Limited size and quantity	Inventory	On-demand		

Pantas and Ting

Sutardja Center
for Entrepreneurship & Technology

Berkeley Engineering
Berkeley Engineering

Source: start-telegram, healthline

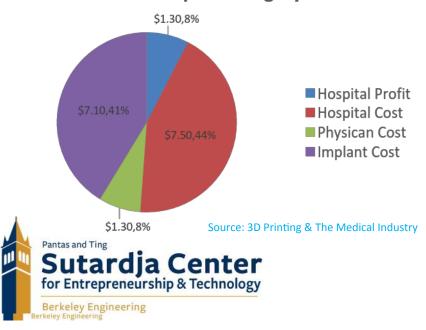
Source: conformis

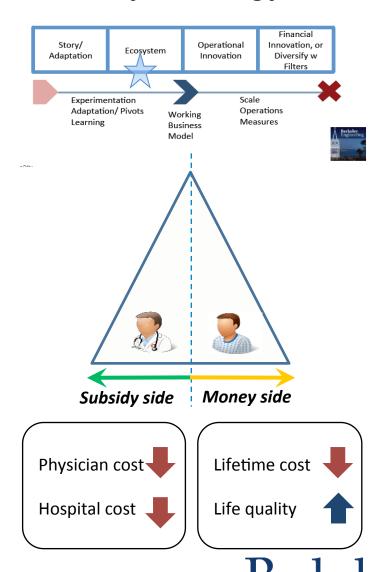
Disconnection of Market Growth

Stock Price Trend

Revenue Trend

	Three Months Ended September 30,		Nine Month	Nine Months Ended September 30,	
	2015	2014	2015	2014	
Revenue					
Product	\$ 13,490	\$ 12,002	\$ 43,953	\$ 33,975	
Royalty	404	_	3,863		
Total revenue	13,894	12,002	47,816	33,975	
Cost of revenue	10,340	7,351	30,392	21,961	
Gross profit	3,554	4,651	17,424	12,014	
Operating expenses					
Sales and marketing	10,225	7,083	29,563	22,541	
Research and development	3,885	3,969	12,218	11,163	
General and administrative	5,656	3,927	16,790	11,775	
Total operating expenses	19,766	14,979	58,571	45,479	
Loss from operations	(16,212	(10,328	(41,147) (33,465	


Source: SEC.org



Knee Replacement Eco-system & Subsidy Strategy

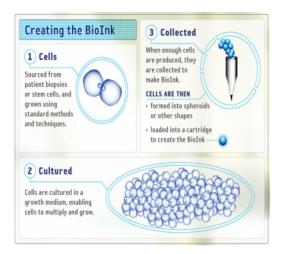
Knee Replace Surgery Cost*

Horizon #3: Are We Ready for the Future?

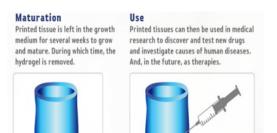
Scientists hope to one day grow any tissue or organ a person needs

Current waiting list for kidney transplant in US: 93,000 people Waiting time for a deceased donor: ~5 years (~10 years in some states)

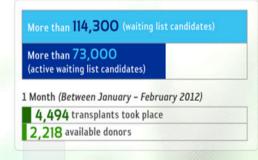
Over 17,000 people approved and waiting for liver transplant.



3D Tissue Printing Flow Illustration.


Pre-Processing Computer Model (CAD, Blueprints), Preconditioning

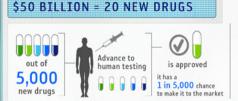
Post-Processing Bio-Reactor, post-conditioning, Tissue Maturation



Staging: What can 3D Bio-Printing Bring To The Table ?

ORGAN TRANSPLANTATION BY THE NUMBERS

Every year, the number of people on the waiting list for an organ transplant increases, yet the amount of donors and available organs remains at a low.



In 2005, 1,848 patients died waiting for a donated liver to become available.

DRUG INDUSTRY PROBLEM

Each year, the industry spends more than \$50billion on research and development, and approximately 20 new drugs are approved by the FDA.

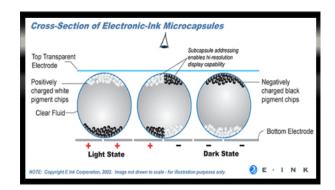
A new drug, on average, costs \$1.2billion and takes 12 years to develop

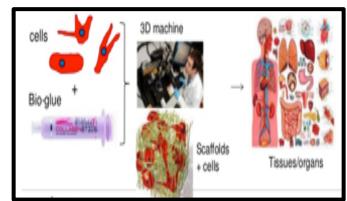
3D bioprinting technology has the potential to significantly impact the speed, predictiability and consequently the cost of successful drug discovery.

PRINTING A LIVER

The eventual, longterm goals for bioprinting are to produce full organs. Using today's technology, an average sized liver (1,200cc) and liver lobe (120cc) would take 10 days to print. As technology improves the speed at which human tissue and, eventually, full organs can be printed will vastly improve.

http://www.organovo.com http://www.unos.org http://www.liverfoundation.org http://www.wired.com http://www.explainingthefuture.com



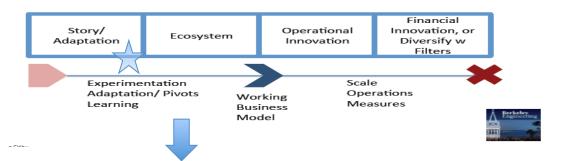

Similarity: E-INK & ORGANAVO

E-INK

BIO-INK

Similar business challenges: What to focus on?

Creating a market,


sustainability

Organovo At A Glance

Core Competency

- 3D Bio-printing technology
- Develops 3D human disease models.
- Accelerating research (better than animal models)
- Platform novel NovoGen Bioprinter, bio-ink

Product Scope

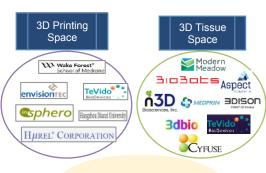
- Application of 3D tissues drug discovery / development, biological research, therapeutic implants for treatment of damaged or degenerating tissues and organs
- Revenue Products 3D Human Liver & Kidney tissues (early stage)

Strengths & Opportunity

- Leader in the space
- Publicly traded
- IP owns / holds exclusive licenses to multiple patents
- Opportunity broad applications for unmet needs
- Potential -accelerate drug discovery, enable faster treatment at lower cost

Risk Factors & Challenges

- Not profitable yet
- Business strategy, new and unproven technology
- Regulation & IP risks
- Challenge Overcome risks, break through either with partnerships or own R&D.



Organavo: Ecosystem Analysis

wholly-owned subsidiary, provides high-quality primary human liver cells for a wide variety of in vivo & in vitro research applications

Competition

Competitive Edge – Use of 3D in contrast to 2D

Closely resemble native tissue

Public

exVive3D™ HUMAN TISSUE
MODELS & SERVICES FOR
RESEARCH

3D Human Liver Tissue
Testing Services
exVive3D™ Liver Tissue
Performance

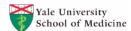
3D HUMAN TISSUES FOR
MEDICAL RESEARCH &
THERAPEUTICS

Research Collaboration s

Leverage Bio-* Platform

Tissue Therapy, Complex vascular networks

Cancer Research


THE MICHAEL J. FOX FOUNDATION FOR PARKINSON'S RESEARCH

KNIGHT CANCER INSTITUTE

ĽORÉAL

develop 3D printed human skin

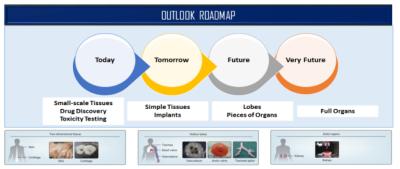
Partners

Customize Tissues

test medicine toxicity on 3D printed liver cells

Customer focus, ecosystem partnering key for success

Customers



PUTTING IT TOGETHER

3D BIO-PRINTING: Outlook and Opportunities

	2013	2015	2020	2025
Challenges				
Material cost	•	0		
Material selection				
Printer cost				
Throughput				
Resolution				
IP/ethical issues			<u></u>	
Adequate design software				
Opportunities				
Local manufacturing and reduced inventory	•	•		
Cheaper and more accessible aftermarket parts and repairs	•		•	•
Novel material compositions and properties	•	•		
Multifunctional structures	•		•	
Increased premium on commodity materials	•			
Customization				

3D PRINTING MEDICAL: OPPORTUNITY &

CHALLENCES

Horizon 1

• Opportunities – Expanding international market; parallel markets (iTero scanner)

Targeted segments (age and treatment groups);

Treatment enhancements (G4, G5, ...)

• Challenges – Key patent expirations; deep pocket competition

Horizon 2

• Opportunities – Customization, physiologically optimized joint implants

Comfort and durability, On-Demand (Just-in-Time, lower OPEX)

• Challenges – synergy,

ECOSYSTEM (Dr. / Patient, Insurance), Money / Subsidy side

Logistics

Horizon 3

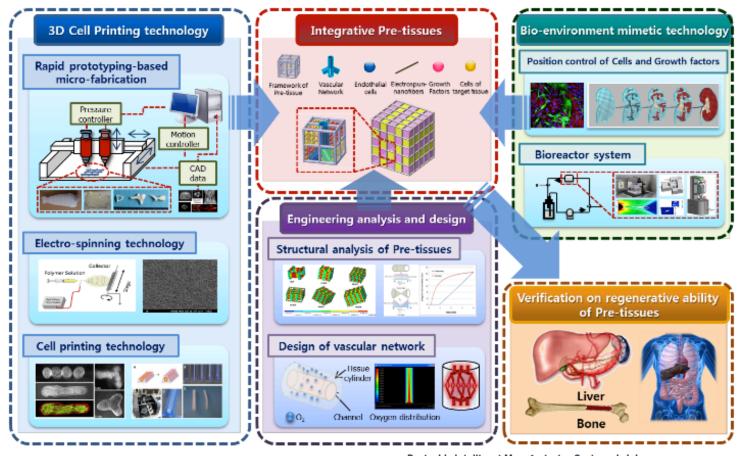
• **Opportunities** – SKY is the LIMIT, Tissues to full functional organs (kidney, heart, liver, ..)

Organ transplants, Skin/plastic surgery, Faster drug research

• Challenges – Approvals, Acceptance, Ethics, Business focus, Sustainability

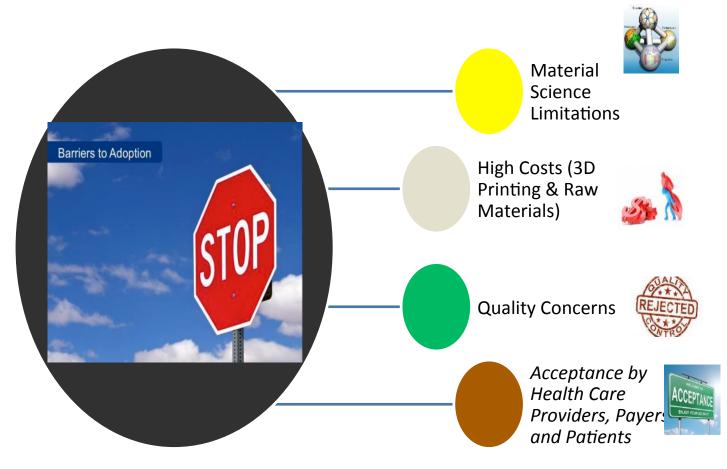
3D PRINTING MEDICAL : Impact Analysis Conclusion

Disruptive Company	Positive Impact (who benefits)	Negative Impact (who suffers)	Impact Timeframe	WHY (and Threats)
Align Technology Horizon 1	Consumers; Orthodontists	Traditional Brace Suppliers	Growing since 1998 FDA approval	Consumer Satisfaction; Key IP-protection [IP expires in 2017]
Conformis Horizon 2	Patients, Hospital Inventory	Zimmer – established non-3D MKT leader	< 5yrs	Ecosystem lagging
Organovo Horizon 3	Patients cured, War/ accident areas, Organ transplants, Bio-ink makers, CAD software, Drug research	Kidney dialysis ops, Diabetes/insulin ops, Organ logistics/ banks, Pacemakers Stop gap treatments	5- 10 yrs	Approvals/ Testing, Adoption, Ethics, Cost



Q & A

COMPLEXITIES IN 3D BIO-ENGINEERING



Postech's Intelligent Manufacturing Systems Lab Is
Source — microfabricator.com article Leading the 3D Biofabrication Charge

3D BIO-PRINTING: ADOPTION BARRIERS

3D Printing – Possible Disruption? "Threat or Opportunity" What should Healthcare Companies Do

Scenario Planning Engagement Value Capture
Assessment

Trigger Experimentation

M&A / Strategic Engagements

Strategy Definition

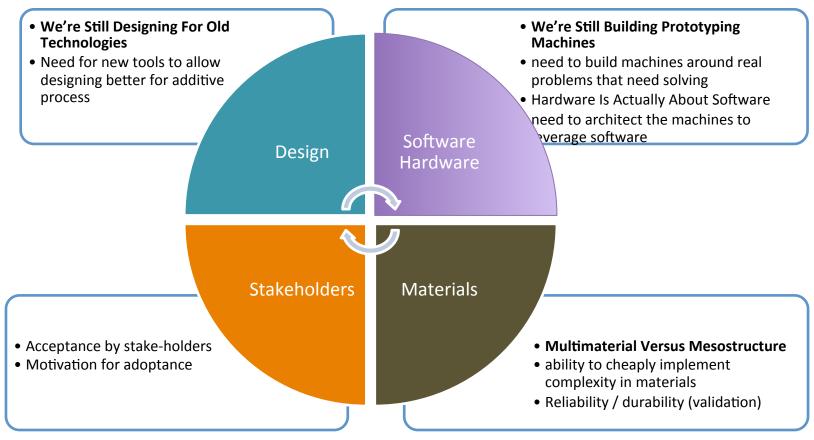
Align: Innovate to Prevent Disruption

- Discuss key patent expiring in 2017
- Introduce iTero as new business segment: adds value to existing product (scanning for molds) and also extends to new products (scanning for implants, bridges, etc...)

	Fiscal Year			
Percentage of Net Revenues by Product	2015	2014	2013	
Invisalign Full Products	78%	77%	75%	
Invisalign Express Products	11	11	11	
Invisalign Non-case*	6	6	7	
Scanners and Services	5	6	7	
Total net revenues	100%	100%	100%	

Conformis: Market Growth & Challenge

- Barrier for Market adoption
 - Within 50miles in BayArea 5 doctors for conformis 3D knee replacement rather than vs compared to TKR (> 300 doctors).
 - Standford medical center cemented prosthesis and uncemented prosthesis with TKR.
 - Iowa university medical center for Knee replacement (Top Knee surgeon facility) – Convectional TKR
- Big player will be enter the market for competition.
 - Merged Biomet + Zimmer : Zimmer Biomet announced 3D printed Ankle fusion.
 - Stryker: investment of 3D printing manufacturing facility



Press release: BASK annual meeting for conformis report .(British association of surgery knee)

3D Printing Medical Ecosystem Challenges

Old-fashioned ways of thought have prevented us from truly realizing the potential of 3D printing By changing how we think about 3D printing to embrace the systems nature of the family of technologies, we can begin to actually leverage it against real problems.

