Geisinger Collider Project

Predicting COPD in pneumonia patients

Phase 2 - Spring 2016 Rebecca Barter and Shamindra Shrotriya

Question:

For a new patient who has been diagnosed with pneumonia, do they have Chronic Obstructive Pulmonary Disease (COPD)?

Can incorporation of external information improve prediction?

Chronic Obstructive Pulmonary Disease

- COPD is a major cause of mortality worldwide.
- Approximately 12 million adults in the U.S. having been diagnosed with COPD.
- A further 12 million adults in the U.S. are currently living with undiagnosed COPD.

Key Hypotheses: COPD Risk Factors

- Smoking
 - Available from Geisinger clinical data!
- Occupational exposure to VOCs (emissions from biomass fuels)
 - Infer from employment information provided by Geisinger!
- Outdoor pollution
 - Find on the internet
- Weather
 - Find on the internet

The Data Collection

Clinical Data

Daily pollution data from the EPA website!!!

Daily Summary Data

Criteria Gases

Year	Ozone (44201)	SO2 (42401)	CO (42101)	NO2 (42602)		
2015	daily_44201_2015.zip	daily_42401_2015.zip	daily_42101_2015.zip	daily_42602_2015.zip		
	259,151 Rows	213,936 Rows	129,000 Rows	95,351 Rows		
	2,958 KB	2,198 KB	1,141 KB	1,309 KB		
	As of 2015-11-27	As of 2015-11-27	As of 2015-11-27	As of 2015-11-27		
2014	daily_44201_2014.zip	daily_42401_2014.zip	daily_42101_2014.zip	daily_42602_2014.zip		
	391,846 Rows	324,818 Rows	215,101 Rows	148,509 Rows		
	4,389 KB	3,277 KB	1,826 KB	1,991 KB		
	As of 2015-11-27	As of 2015-11-27	As of 2015-11-27	As of 2015-11-27		
2013	daily_44201_2013.zip	daily_42401_2013.zip	daily_42101_2013.zip	daily_42602_2013.zip		
	391,592 Rows	332,132 Rows	216,689 Rows	139,272 Rows		
	4,388 KB	3,340 KB	1,822 KB	1,841 KB		
	As of 2015-11-27	As of 2015-11-27	As of 2015-06-20	As of 2015-11-27		
2012	daily_44201_2012.zip 388,718 Rows 4,404 KB As of 2015-11-27 daily_42401_2012.zip 330,112 Rows 3,335 KB As of 2015-11-27		daily_42101_2012.zip 222,504 Rows 1,908 KB As of 2015-11-27	daily_42602_2012.zip 134,777 Rows 1,776 KB As of 2015-11-27		
2011	daily_44201_2011.zip	daily_42401_2011.zip	daily_42101_2011.zip	daily_42602_2011.zip		
	381,859 Rows	323,535 Rows	226,465 Rows	131,819 Rows		

- Ozone
- CO
- SO2
- NO2
- PM10
- PM2.5
- Arsenic
- Lead
- NO
- CS2

Daily weather data from PSU Climatologist website!!!

PASC IDA Data Page

Select a network: FAA Daily \$
Select a display option: List Map

Temperature

Pressure

Humidity

Viewing Data Network FAA_DAILY

ID	Name	County	State	Lat	Lon	Elevation (feet)	Start	End
KABE	ALLENTOWN	LEHIGH	PA	40.650	-75.440	376.0	1948-02-01	2016-04-07
KAOO	ALTOONA	BLAIR	PA	40.290	-78.320	1504.0	1977-01-28	2016-04-07
<u>KBVI</u>	BEAVER FALLS	BEAVER	PA	40.770	-80.390	1230.0	1996-01-02	2016-04-06
<u>KBFD</u>	BRADFORD	MCKEAN	PA	41.800	-78.640	2142.0	1957-07-01	2016-04-07
<u>KBTP</u>	BUTLER	BUTLER	PA	40.770	-79.950	1250.0	1992-02-26	2016-04-07
<u>KCXY</u>	CAPITAL CITY	YORK	PA	40.220	-76.850	340.0	0000-00-00	2016-04-07
<u>KFIG</u>	CLEARFIELD	CLEARFIELD	PA	41.040	-78.410	1516.0	2000-12-31	2016-04-07
<u>KDYL</u>	DOYLESTOWN	BUCKS	PA	40.330	-75.120	394.0	1999-07-28	2016-04-07
<u>KDUJ</u>	DUBOIS	JEFFERSON	PA	41.180	-78.900	1814.0	1973-01-27	2016-04-07
<u>KERI</u>	ERIE	ERIE	PA	42.080	-80.170	730.0	1926-01-01	2016-04-07

Sounds great!

So what's the problem?

The smoking and employment information was missing!

The EPA "daily" values were not daily at all...

We went ahead and blended anyway...

Data Blending

- Blended EPA and PSU with Geisinger using date and closest zipcode.
- Problem: not a lot of geographical overlap between Geisinger patients and environmental measurement sites.

Pre-processing the data before modeling:

Dealing with missing values

How can we deal with missing values?

Possible ideas:

- Exclude all observations that had any missing features to only leave a modeling dataset with no missing data.
- 2. Utilize methods that **directly allow for missing data** in the modeling process.
- Exclude all features that have more than a threshold proportion of missing values.
- 4. Perform **imputation** on all missing features using the **median**, mean or a knearest-neighbors approach from non-missing values from the same feature.

How did we deal with missing values?

Our approach: to minimise data loss and ensure practicality

- Remove all variables with more than 8% missing values.
- Impute the remaining missing values
 - Numerical features: impute using the median.
 - Categorical features: impute using the mode.

Pre-processing the data before modeling:

Dealing with unbalanced classes

How can we deal unbalanced classes?

- Many machine learning algorithms are known to perform poorly under class imbalance.
 - We have 5,704 COPD patients and 2,374 non-COPD patients.

Possible ideas:

- Upsample: randomly sample labels from the smaller class (non-COPD) with replacement to be equal in number to the non-COPD labels.
- Downsample: randomly sample labels from the larger class (COPD) to be equal
 in number to the non-COPD labels.

How did we deal unbalanced classes?

Our approach

• **Upsample:** randomly sample labels from the smaller class (non-COPD) with replacement to be equal in number to the non-COPD labels.

No need to sacrifice sample size.

Stepwise Feature Inclusion

Stepwise Feature Inclusion

Geisinger Clinical

Gender, marital status, employment status, age, race, asthma

Geisinger Clinical + Smoking

- Gender, marital status, employment status, age, race, asthma
- binary smoking variable

Geisinger Clinical + Smoking + PSU weather data

- Gender, marital status, employment status, age, race, asthma
- binary smoking variable
- average temperature, pressure and humidity in the week preceding the admission

Modeling

We used empirically well-tested non-parametric models

- Random Forest
- GBM
- XGBoost

To fit these models we used the R caret package

- Test interaction of various combination of input parameters e.g. for GBM varied interaction depth and number of trees
- Parameters selected using 5 repeated rounds of 10-fold CV

Results

Results

- Black diamond:

 average of CV
 estimates for the
 optimal parameter set.
- Red circle: prediction accuracy on withheld test set.

Best performing model:

- Random Forest
- Accuracy of 70%

Conclusion

Conclusion

Question: For a new patient who has been diagnosed with pneumonia, do they have COPD?

- Data collected was plagued by missing values.
- Better performance accuracy may have been achievable with better quality data:
 - complete smoking pack- years
 - outdoor and indoor pollution data